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Summary. The convergence properties of approximate one-particle Green's func- 
tions derived from separable potential expansions are examined. A convergence 
criterion for the basis set to be used in a L6wdin-type inner projection is established 
and illustrated by calculations of matrix elements of the Coulomb Green's function 
based on separable potentials of finite rank. It is then suggested that a separable 
potential ansatz for a many-electron wave function may be introduced into 
Frenkel's time-dependent variation principle in order to obtain approximate re- 
sponse functions with the continuum of one-particle states explicitly included. 
A preliminary outline of the formalism at the time-dependent Hartree-Fock level is 
presented. 

K e y  words: Separable potentials - Continuum states - Green's functions - 
Frenkel ' s  variation principle 

I. Introduct ion 

It is quite generally apparent from intermediate and advanced textbooks on 
quantum mechanics and its applications to the calculation of atomic and molecular 
response properties that sums over states, which include the integration over the 
continuum manifold of one-particle states are called for. Such summations may be 
carried out, if the one-particle Green's functions are known [1]. As it is well known, 
however, there are only very few examples of systems for which accurate Green's 
functions are available, and even in the simple case of a hydrogen-like Coulomb 
potential, the analytic form [-2] is too complicated to encourage molecular applica- 
tions, even if the matrix elements are known explicitly in a Slater basis [3]. 

An approximation scheme, which is based on separable one-particle potentials 
needed for the treatment of many-electron response properties, is considered in this 
paper with the view of determining response functions, which includes the 
continuum in an explicit manner. We shall write a separable potential of finite 
rank, n, as 

v,,(x, x') = Os(X)ass, OAx  ) , (1)  
1 
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where a = {ass,} is a Hermitian matrix of dimension n, and {Os(x)} denotes 
a suitable set of basis functions for the potential. The combined space-spin vari- 
ables for one electron are written as x = (r, ~). An outline of the mathematical 
properties of separable potentials was given by Ghirardi and Rimini [4]. They 
showed, that while the number of bound states derived from the Schr6dinger 
equation corresponding to such potentials at most equals the number of negative 
eigenvalues of the matrix a, the total manifold of bound and continuum states is 
complete. We shall in particular consider separable potentials derived by using 
L6wdin's inner projections [5]. 

The separable potential offers an explicit expression for the associated Green's 
function, which should satisfy the equation 

{E + ½A} G,(x, x'; E) = 6(x - x') + f d x "  v,(x, x")G,(x", x'; E) (2) 

for a generally complex value of the energy variable E with the appropriate 
boundary conditions. As an auxiliary tool we employ the free particle Green's 
function Go(E) for which we have the differential equation 

{e + ½A) 6o(X, x'; E) = 6(x - x'). (3) 

Provided that the boundary conditions imposed on Eqs. (2) and (3) are the same, 
the solution to Eq. (2) may be written as 

G.(E) = Go(E) + ao(E)lO)a[1 - T(E)a]-~ (OIGo(E) 

= Go(E) + Go(E)lO)[a -1 - T(E)]-~(OIGo(E) (4) 

in a compact operator notation. We have introduced here a matrix representation, 
T(E), of the free particle Green's function in the basis {Os(x)}, i.e. 

r (~)  = (OIGo(E)IO). (5) 

The algebra used to derive Eq. (4) is well known [6]. The last step is of course only 
valid, when the matrix a is non-singular. 

The approach to response function calculations, which we adopt here, is 
formally closely related to the use of Schwinger's variation principle in scattering 
theory [7] and Hall's variation principle for bound states [8] as generalized by 
Thulstrup et al. [9]. Operator kernels such as those given by Eq. (4) are sufficiently 
explicit and manageable to make molecular applications feasible. Several cal- 
culations concerning electron scattering on molecules have demonstrated this 
fact [7]. 

The convergence properties of a sequence of approximate one-particle Green's 
functions derived from separable expansions for the potential of increasing rank 
are examined in the next section, where a convergence criterion for the basis set to 
be used in a L6wdin-type inner projection is established. The method is illustrated 
by calculations of matrix elements of approximate Coulomb Green's functions in 
Sect. 3, which includes suggestions for possible improvements. Orbital variations 
generated by variations in a separable potential are then considered in the fourth 
and final section of this paper. The results indicate that a separable potential may 
be introduced as an ansatz into Frenkel's time-dependent variation principle in 
order to obtain approximate response functions with the continuum of one-particle 
states included in a closed form. A preliminary outline of the formalism is given. 
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2. Approximate matrix elements of Coulomb Green's functions 

Consider the following pair of equations: 

{E + ½A - v(x)} G(x, x'; E) = 6(x - x') (6) 

and 

{ E + ½ A - v , } G , ( x , x ' ; E ) = b ( x - x ' )  ( n = l ,  2 . . . .  ). (7) 

In Eq. (6) v denotes an ordinary local, negative-definite Coulomb potential, and the 
operator v, is given by the inner projection 

v. = - (  - v ) l / : Q . ( - v )  1/:, (8) 

where we have introduced the projection operator 

Q, = ~, I~s><~osl (9) 
1 

for an n-dimensional subspace of L 2, spanned by the orthonormal set {cos}. 
Due to the particular asymptotic features of the Coulomb Green's function, we 

do not anticipate a pointwise convergence of the sequence {G,(x, x'; E)} toward 
G(x, x'; E) when the free particle Green's function is used as Go in Eq. (4). Instead, 
we shall focus the attention on the possible convergence properties in the weak 
sense [10]. Thus, we wish to prove that under certain conditions it holds that 

lim (c~IGn(E)IO > = <q~lG(E)l~b> (10) 
n ~ o o  

for a square-integrable test function ~b(x), i.e. 

PlCPI 2 = idx  I~b(x)l 2 < oo. (11) 
/ 

The test function clearly belongs to the domain of both the operators G(E) and 
G,(E). Furthermore, we have the inequality 

[I Gqb el ~< II q~ II/~ (12) 

(and a similar one for II a.q~ II) where the real parameter t/is defined as the distance 
between the complex point E and the closest singularity of G, i.e. 

t / =  inf{lE - el, where ee the spectrum of -½A + v(x)}. (13) 

We shall assume throughout that the energy variable is chosen such that t />  0. 
It follows from Eq. (6) that 

{g  + ½Z - v.}G(E)14)> = Iq~> + (v - v . )G(E)I¢>.  (14) 

Forming the scalar products on both sides of Eq. (14) with the function G + ]~b > and 
using Eq. (7) with E replaced by E* we find that 

<qSlG - G, Iq~> = <G + ¢l(v - v,)GIq~>. (15) 

We consider first the somewhat simpler case, in which the singularity at the origin 
of the Coulomb potential is removed by assigning a finite radius to the nucleus, 
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such that  

/~ = s u p { - v ( r ) l r c R  3} < oe. 

I t  is convenient  to introduce the no ta t ion  

14 ' . )  = ( - v ) l / 2 ~ . ( E ) l ¢ )  

and 
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(16) 

(17) 

p = sup{ -v ( r ) ;  ref2} .  

[[(v -- v,)G4 [I z = f dx ](v - v,)Gc~t 2 

= f d x  ( -v ( r ) ) [ (1  - Q, )0[  2 

= F . + A . ,  

where ~p is defined by Eq. (18) and we have in t roduced the quantit ies 

F. = f,o dx ( -v ( r ) ) l (1  - Q.)Ol 2 

(23) 

(24) 

(25) 

Then  we find that  

Also, let 

14,> = (-v)I/eG(E)I4)>. (18) 

We assume that  the test function is sufficiently well behaved to ensure that  both  
of these functions belong to L 2. This is not  a serious l imitat ion since the bound-  
ary condit ions on the C o u l o m b  Green ' s  function ascertains that  r• is zero at the 
origin [2]. 
Then Eq. (15) m a y  be rewrit ten as 

<qSIG - G, IqS> = - (0 . l (1  - Q, ) ]O)  (19) 

and an appl icat ion of the Cauchy -Schwar t z  inequali ty gives 

I (qs la (E)  - G,(E)I4~)] ~< 110,[I 11(1 - Q , )0  [[ 

,,< #X/Nt/-ll[ q~ 1111(1 - Q , ) 0  H ~ 0 when n-- ,  o% (20) 

provided that  the basis set {cox} is complete,  and we conclude that  Eq. (10) is valid 
m this case. 

In the case of one-point  charge singularity in the potent ia l  at the origin we first 
apply  the Cauchy-Schwar t z  inequali ty to Eq. (15): 

[ (~b[a(g)  - a ,(g)lqS)[  ~< JIG + qS[I [l(v - v,)aq5 II 

~< IIq~ll I I ( v -  v,)G(al[~ -1 (21) 

Thus,  we examine the n o r m  of the function (v - v,)G~5. Let co and Q denote  the unit 
sphere a round  the origin and its complement ,  respectively, such that  

R 3 = co w Q. (22) 
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and 

( .  
A, = JQ dx ( - v ( r ) ) l ( 1  - Q.)g,] z 

P fa dx 1(1 -- Q,)O[ 2 

~< p II (1 - Q , ) 4 ,  [I 2 __, 0 w h e n  n -- ,  oe .  (26)  

For any positive, real number e, the Coulomb potential admits the definition of 
a positive, finite parameter, 2(e), as the integral 

2(c 0 = f~, dx ( --v(r))r (2~-2) < oO. (27) 

By rewriting Eq. (25) we find that 

F, = f~, dx ( -v(r))r(2~- 2)lrl-~(1 - Q.)~,l 2 

~< 2(~)sup{lrl-~(1 - Q,)~,(x)[2; reco, ~ = 1, -1},  (28) 

Thus, we conclude that the separable potential approximation scheme for bound 
state matrix elements of the Coulomb Green's function considered here is conver- 
gent provided that an c~ > 0 exists such that 

lira sup{lr 1-~(1 - -  ( 2 . ) ( - v ) l / 2 G ( E ) O ( x ) 1 2 ;  r~og, ff = 1, - - 1 }  = O. (29)  
n-+oo  

This type of uniform convergence is to be viewed as a requirement on the basis set, 
which we employ in the inner projection given by Eq. (9). The convergence criterion 
given here is readily generalized to a general molecular nuclear framework. 

3. T e s t  c a l c u l a t i o n s  

In order to test the numerical aspects of the convergence given by Eq. (10), we have 
carried out some matrix element calculations for the simple hydrogenic poten- 
tial - 1/r for various choices of test functions, ~b. 

All example calculations presented in this section are carried out in spherical 
symmetry in which case we have the usual decomposition [11] 

oo 

G(x, x'; E) = ~ ,  ~" gl(r, r'; E)/rr'{Pl(cos 0)(2/+ 1)/4n} (30) 
0 

and similar ones for the separable potential- and free particle Green's functions. 
The partial wave components of the latter are given by 

g~(r, r'; E) = (4/n) dk (kr)jl(kr)(kr')jl(kr')/(2E - k2), (31) 
0 

where jz(kr) denotes an ordinary spherical Bessel function. 



292 S.B. Padkj~er, E. Dalgaard 

In spherical symmetry Eq. (1) adopts the following form: 

v,(x, x') = 6~, ~ vl(r, r')/rr' {Pl(cos 0)(2/+ 1)/4re}, 

where 

(32) 

v l ( r , r ' ) = ~ r - 1 / z c o ( j l ,  r)r'-l/zco(j'l,r')*a~j, ( j , j ' =  1,2, ... ,n), (33) 

with one a-matrix for each value of 1. Each angular momentum component of the 
separable potential Green's function can then be written in the same form as given 

b y  Eq. (4): 

9'(r, r'; E) = g~(r, r'; E) + ~' tc}(r; E)[a -1 - T(E)]~,' ~c},(r'; E*)*. (34) 

We have introduced the functions 

where 

f 
oo 

tc}(r; E) = (4/~) dk (kr)jt(kr)O}(k)/(2E - k2), 
0 

(35) 

f 
co 

0}(k) -- dr (kr)jz(kr)r-1/2co(jl, r). (36) 
0 

The matrix elements of the T-matrix are given by 

T }j,(E) = (4/re) dk O~(k)*O},(k)/(2E - k2). (37) 
0 

These equations allow us to evaluate the left-hand side of Eq. (10) for any value of 
E. We are frequently interested in taking the limit E = co + i t / ~  co + i0+, and 
when matrix elements for real energy values are reported in the following, this 
limiting procedure is implicitly understood. While the validity of Eq. (10) of course 
not implies, that the two limiting procedures may be interchanged, we have only 
encountered one case, co = 0, for which a problem arises in this regard. We shall 
return to this question shortly. 

From the generalized Hall variation principle [9] we know that rapid conver- 
gence for bound state singularities of Gn(E) toward the exact values can be expected 
as the number of basis functions is increased. The findings of the present study 
confirm this expectation without exception, but there is no reason to exhibit such 
well known results here. 

Consider now the matrix element on the right-hand side of Eq. (10), which has 
the spectral representation, 

(~bl a(g)lq~) = ~ 1(4)1 nlmv)lZ/(E - e,~) + p(e, 1)del(~blelmv)12/(E - e), 
0 

(38) 

where (nlmv) and (~Imv) label bound and scattering states, respectively, and 
p denotes the density of states. A series of calculations using ls type of test function, 
i.e. (suppressing spin) 

qS(r) = 2( 3/2 exp ( - ( r )  Yoo(O, ~b), (39) 



Green's functions for separable potentials 293 

0.685 

Re <~IG(£=I .O+iO + a.u.)lg~ 

0.680 

0.675 

0.670 

0.665 

a D ~= 1.0 
o ~=1.1 
o ~= 1.2 

0 10 20 30 40 50 

Im <%olG(E=I .O+iO + a.u.)lg~ 

[ I I I I 

0 10 20 30 40 

Number of basis functions 

0.005 
o - - ~ =  1.0 
o ~=1.1 
o ~= 1.2 

............. 0.000 

~ e a ~ e ~ e e e e ~  

-0 .005  

-o.010 

i - 0 .015  

50 60 

Fig. 1. Separable potential Green's function matrix element at E = 1.0 + i0 + a.u. using a ls Slater 
orbital with exponent ~ as a test function versus the number of basis functions 

with different exponents are exhibited in Fig. 1. For  these calculations the L2-basis 
used in the inner projection given by Eq. (8) was chosen as 

co(j0, r) = [8/ ( j  + 1)(j + 2)]l/2rL}Z)(Zr)exp(-r), (40) 

where L} 2) denotes a generalized Laguerre polynomial. The radial functions 
{co(j0, r ) l j  = 1, . . . ,  n)} are orthonormal and the a-matrix in Eq. (33) becomes 
minus one times the unit matrix. Convergence, in the sense 

lim <qSla,(co + i0+)1¢> = (¢lG(co + i0+)1¢> 
n ~ o o  

(41) 

which is not an immediate consequence of Eq. (10), is achieved for both the real and 
imaginary parts of the matrix element, but with the chosen basis set a relatively 
large number of functions is needed. The test function given by Eq. (39) generally 
has a non-vanishing overlap with both the bound and continuum eigenfunctions in 
Eq. (38), but when ~ = 1.00, ¢ becomes the exact ls eigenfunction so that 

(¢lG(~o + i0+)t¢)  = (co + ½)-1, (42) 

which provides a simple check on the results. We note that the imaginary part of 
the matrix element converges very rapidly toward zero at E = 1.0 + i0 + as it is 
apparent from Fig. lb. 
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Fig. 2. Separable potential Green's function matrix element at complex energies a.u. using a hydrogen 
ls orbital multiplied by z as a test function versus the number of basis functions 

Of  particular interest is the complex dynamic polarizability [1] 

c~(E) = - < l s i z G ( E  + els)z[ls> -- <ls IzG(- -E + ~ls)z[ls) 

and the photoionization cross-section given by 

(43) 

a(o)) = lim (4rcco/c) Im ~((~ + it/). (44) 
~ 0  + 

Only terms corresponding to l = 1 contribute to the matrix elements needed here, 
and we have chosen the following or thonormal  radial functions for the separable 
potential expansion: 

co(jl, r) = [32/(j + 1)(j + 2)(j + 3)(j + 4)]l/2r2L}4)(2r)exp(--r) (45) 

We consider first the convergence behaviour of the matrix element < l s l zG(E)z l ls> 
both on the real axis and in the complex plane. The results, which are plotted 
versus the number  of basis functions in Fig. 2 show relatively fast convergence for 
both the real and imaginary parts for points far from the real axis. As expected from 
the estimates given by Eqs. (20) and (21) the convergence becomes slow near the 
real axis, however. 
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Fig. 3. Separable potential Green's function calculations of the photo-ionization cross section for 
hydrogen based on 0, 1, 5 and 20 basis functions versus photon energy co 

The separable potential  calculations of  the photoioniza t ion  cross-section are 
compared  to the exact curve in Fig. 3. The last term in Eq. (43) does not  contr ibute 
to ~(co), and again we evaluate the limit r / ~ 0  + for a fixed number  of  basis 
functions. Thus,  we have plotted 

~(co) = - (4rcco/c) Im ( l s  lzG,(co + i0 + + els)z[ l s )  (46) 

for n = 0, 1, 5 and 20 versus e). When  co is larger than about  one Hart ree  just one 
term in the separable potential  suffice to provide a qualitatively acceptable correc- 
t ion to the free particle term and a five term expansion yields essentially the exact 
result as can be seen from Fig. 2b and c. 

In the range 0.5 a.u. < co < 1.0 a.u. the situation is more  complicated and less 
satisfactory due to an oscillatory behaviour  of the finite rank separable potential  
calculation of  or(co). Nevertheless, the present calculation converges toward  the 
exact cross-section whenever co > 0.5 a.u. 

At the threshold limit, co -- 0.5, approached  from above, the density of states of 
the free particle Green 's  function is zero. It follows then from Eq. (4) that  the 
separable potential  Green's  function, G,(E) ,  will also have a vanishing density of 
states at this point. Therefore, the calculated photoionizat ion cross-section cannot  
be non-zero at the threshold and a uniform convergence over the entire energy 
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range is not possible, when the separable potential Green's function construction is 
based on the free particle Green's function. 

A possible solution to this problem might be to replace Go in Eq. (4) by 
a physically more correct Green's function, possibly of the Wentzel-Kramers- 
Brillouin type for the case of spherical symmetry [1, 12]. Such ideas have been 
advocated by Linderberg, who gave a reformulation of the many channel scattering 
problem by using the WKB approximation as the zero order propagator [13]. 
A more involved solution method for the homogeneous Lippmann-Schwinger 
equation for potentials having a Coulomb-like long-range behaviour, which uses 
the full radial Coulomb Green's functions for each angular momentum component 
as a zero order propagator has recently been developed by Papp [-14]. 

The oscillatory behaviour of the calculated cross-section indicates that the 
quality of the basis set depends on the energy. It seems plausible to circumvent this 
unsatisfactory feature by introducing E-dependent basis functions in the separable 
potential construction as suggested by Adhikari [15]. The convergence analysis 
given in Sect. 2 shows that the separable potential Green's function would yield the 
exact matrix element (~bl G(E)I q S) provided that the function ~ given Eq. (18) could 
be expanded exactly in the chosen basis {cos}. We may then conjecture that a fast 
convergence would result if a chosen basis was augmented either by 

iCOn+l) = (--v)I/ZG,(E)[(o) (47) 

or a set of E-dependent basis functions designed to have the capability of expand- 
ing the right hand side of Eq. (47) accurately. Recent work of Cacelli et al. [16] 
indicate that simple Slater functions with complex exponents may serve this 
purpose. 

4. Orbital variations generated by variations in a separable potential. 
Linear response functions 

We conclude this paper by providing a tentative outline of a formalism in which 
variational calculations of bound states and their corresponding response func- 
tions are carried out by using the expansion coefficients of a separable potential as 
the basic variables in the ansatz for a many-electron wave function. The idea of 
using one-particle potentials as variables to be optimized by using the variation 
principle has a long history in quantum chemistry [17] and has roots in Slater's 
ideas on local exchange potentials [18]. In particular, we would like to point out 
the remarkable work of Talman and Shadwick [19] and Aashamer et al. [20], who 
optimized local, spherically symmetric potentials for atoms. 

For the sake of simplicity we limit ourselves to discuss the approach at the 
Hartree-Fock and time-dependent Hartree-Fock level. The HF-type calculation 
is then parametrized through the requirement, that the occupied spin orbitals 
{qS~ll = 1, ... ,N} for an N-electron system should be exact solutions to the 
eigenvalue equation 

{ez + !2A - v,}qS~(x) = 0 (l = 1, 2, . . . ,  N), (48) 

where the operator v, is given by Eq. (1), but it is convenient to adopt a slightly 
more compact notation. Thus, we shall write the separable potential as a sum of 
Hermitian terms 

v(x, x') = ~ vj(x, x')p~, (49) 
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where each term, vj, is a member of the set 

{Os(x)Os(x')*; Os(x)Os,(x')* + Os,(x)O~(x')*; i(O~(x)O~,(x')* - Os,(x)O~(x')*)}. (50) 

Local operators may formally be included above if so desired. Equation (48) 
implies that the occupied orbitals become functions of the coefficients {pj} impli- 
citly: 

~bl(x) = ~bl(x; PiP2 ...). (51) 

Therefore, also the total energy of the Hartree-Fock state, calculated by using the 
ordinary many-electron Hamiltonian, will be an implicit function of these para- 
meters, 

E(plp2 . . . )=  ( H F I H I H F ) .  (52) 

We do not wish to consider details of the problem of optimizing the energy at 
present, but we note that those orbital variations, which may cause non-trivial state 
variations and therefore variations in the energy, are given by 

laqS,) = lim G,(e, + i~:)Pv~Jcfl,)ap;, (53) 
a ~ O  + 

where the projector onto the complement of the subspace spanned by the occupied 
orbitals has been introduced 

N 

P = 1 - ~ I~b,) (qS, I. (54) 
1 

Let us assume then that the unperturbed optimization problem has been solved. 
The optimal parameters of the separable potential will be designated {pO}. We 
wish to find an ansatz for time-dependent orbitals in the presence of an adiabati- 
cally switched on external perturbation 

W ( O = { V e x p ( - i [ c o + i ~ ] t ) + V + e x p ( - i [ - c o + i ~ l ] t ) }  (*/> 0). (55) 

The external potential will via the optimization procedure induce a time-dependent 
change in the separable potential, which we write as 

W,(t) = ~ vj(x, x ' ) { e j e x p ( - i [ c o  + it/] t) + ~* e x p ( - i [ - c o  + it/] t)}, (56) 

where {ej} is a set of variables to be determined from Frenkel's time-dependent 
variation principle. 
Consider now the time-dependent one-particle Schr6dinger equation, 

(i d/dt - ho - W,)q~(t) = 0 (1 = 1, 2, . . . ,  N), (57) 

where an unperturbed separable potential Hamiltonian has been defined as 

ho = - 1 A  + ~ vjp °. (58) 

The solution satisfying the initial condition 

lim q~l(t) exp(ielt) = qSl (59) 
t ~  oo 

may be written through first order as 

• t(x, t) = ~bt(x, t )exp(-- ie ,  t), (60) 
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c~l(x, t) = Or(x) + ~ PG,(el + co + ir/)vS [~bl)%exp(--i[co + it(10 

+ ~ PG,(ez - co + ir/)vs [ ~bt) c~* e x p ( - i [  -co  + it/] t). (61) 

Strictly speaking the introduction of the projector P here is inconsistent with 
Eq. (57). It is done for later convenience and, without any loss of generality, in the 
applications with which we shall be concerned. 

As usual in derivations of the time-dependent Hartree Fock type equations 
[-21], we introduce the following expression for a time-dependent reference state: 

17/) = exp(iA) lHF)  exp( -- ie), (62) 

where A is a Hermitian, time-dependent one-particle operator satisfying the initial 
condition 

lira A(t) = 0 (63) 
t ~ - - o O  

and e is a real parameter, which shall not concern us here. In a field-theoretic 
notation we may express the operator A as 

A = I d x  dx' tfi + (x)2(x, x')O(x'), (64) 

where 0(x) denotes the electronic field operator. Let the creation operator corres- 
ponding to the occupied, unperturbed spin orbitals {41} be denoted by {a;  }, i.e. 

a[ = f dx • + (x)4,(x). (65) 

We wish to determine the kernel 2(x, x') such that the transformed creation 
operators correspond to the time-dependent spin orbitals given by Eq. (61). Thus, 
through first order in 2 we require that 

exp(iA)a[ exp ( - iA)  = a{ + i[A, a[]  + ... 

a[  + i f d x d x '  0+ (x)2(x, x')Ot(x') + ... 

= f d x  ~p+(x)4),(x, t) + ..., (66) 

which leads to the following expression: 

2(x, x') = ~ {Aj(x, x ' )~exp(  - i [ co  + it/] t) 

+ A s* (x,' x)c~* e x p ( - i [  - co + it/] t) }, (67) 

where the kernel As(x, x') has the ket-bra equivalent 

A s = - i ~,PG,(et  + co + it/)v~14z} <4~1 

+ i ~ [~b~) (4tlv~G,(e~ - co - ir/)P. (68) 

The summation is over l =  1, 2, . . . ,  N. Using Eqs. (64) and (67) we obtain the 
following expression for the operator A: 

A = ~, {A:~sexp(--i[co + it/] t) + A+~ * e x p ( - i [ - - c o  + iql t)}, (69) 
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where a set of frequency-dependent transformation generators have been defined as 

+ it/) = f d x  dx' O+(x)As(x, x'; Aj(m 09 + i/~)~(x'). (70) 

The adjoint operators satisfy the relation 

A+(co + it/) = Aj(--60 -k- it/). (71) 

In particular, we observe that these generators are Hermitian operators at zero 
frequency. We are now ready to determine the variables {c~j [j = 1, 2 . . . . .  n 2 } from 
the Frenkel variation principle, which we write as [221 

Re(57~[i d/dt - H - W]7'}  = 0. (72) 

This equation leads to a perturbation expansion for the operator A only if the 
generalized Brillouin condition 

<HF[[Aj(co + it/), H] IHF> = 0 (73) 

is satisfied. Contrary to the situation in time-dependent Hartree-Fock and multi- 
configurational Hartree-Fock theories the Brillouin condition is not automatically 
fulfilled, when the unperturbed optimization problem for the ground state repre- 
sentative has been solved. The unperturbed optimization can only ascertain that 
Eq. (70) is fulfilled at zero frequency. We shall assume here, however, that the 
unperturbed optimization has been carried out with an accuracy, which for 
practical purposes amounts to a basis set saturation, and then we have the general 
Brillouin theorem fulfilled, 

<HFI[~ + (x)~(x'), H]]HF> = 0. (74) 

Equation (73) follows from Eq. (74) since Aj is a one-particle operator. 
A first order equation for the operator A follows from the Frenkel variation 

principle as 

i<HF] [6A, c3A/~?t] [HF> - <HF] [[6A, U], A] ]HF> + i <HF] [6A, W] ]HF> = 0, 

(75) 

where 

6A = • {Aj 6~j e x p ( - i  [co + iq] t) + A + 6~* e x p ( - i  [ - c o  + it/] t)}. (76) 

When Eqs. (76) and (69) are introduced into Eq. (75) the following time-dependent 
factors will occur: 

exp(-i2[o9 + it/It), exp(2t/t) and e x p ( - i 2 [ - c o  + ir/]t). (77) 

Of these the first and the last are oscillatory. They will be omitted on the grounds 
that their time average vanish in the limit ~/= 0. Furthermore, their coefficients as 
they appear in Eq. (75) vanish identically in the limit of completely arbitrary 
potential variations just as similar terms in the derivation of the ordinary time- 
dependent Hartree Fock equations. Then Eq. (75) reduces to a linear system of 
equations for the variables {c9}: 

{(HF[ [Af, Aj,] [HF)(co + it/) -- (HF[ [Af, U], Aj,]IHF)}~ s, 

= - i ( U F I  [A f, V] IHF).  (78) 



300 S.B. Padkjaer, E. Dalgaard 

Linear response functions are finally derived from the time-dependent expectation 
value of a general operator 

<7'IR] 7'> = (HFIRJHF) + (<R; V >>,~+in exp(--i[co + it/] t) 

+ ((R; V +>>-,o+in e x p ( - i [ - c o  + it/] t), (79) 

with the result that 

<<R+; V > > o ~ + i  ~ = (R]A){(AIA)(co + it/) -- (A]HIA)}-I(AI V) (80) 

in a super operator notation [23]. We employ here the following definitions: 

(X[ Y) = <HFI[X +, Y]IHF> (81) 

and 

(XIH[ Y ) =  (HFI[X +, [H, Y]]IHF>. (82) 

The compact response function formula given by Eq. (80) is similar to well-estab- 
lished expressions [24]. It derives from a much more involved and frequency 
dependent set of transformation generators {Aj(co + it/)}, but it has the gratifying 
feature that the effects of the continuum of one-particle states is included in a closed 
form. 
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